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Background – aircraft engine performance 

estimation and gas path fault diagnostics

• Performance Estimation: 
– Estimation and trending of gradual 

performance deterioration due to fouling and 
erosion of turbomachinery

– Entails the estimation of health parameters 
such as efficiency and flow capacity scalars, 
which reflect deterioration in major engine 
components

– Poses an underdetermined estimation 
problem—more unknowns than available 
sensor measurements

• Gas Path Fault Diagnostics: 
– Detection and isolation of gas path system 

faults affecting engine performance such as 
sensor faults, actuator faults, turbomachinery
damage

– Faults are relatively abrupt or rapid in nature

– Single-fault assumption makes the diagnostic 
problem overdetermined
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Sensor Selection

• Problem: In general, additional sensed 
measurements will improve estimation 
and diagnostic results, but which 
sensors are best and how much 
improvement will they provide?

• Objective: Develop techniques to aid in 
engine health management sensor 
selection decisions, tailored to the 
specific estimation or diagnostic method 
applied.

• Approach: Develop analytical metrics 
based on linear estimation and 
probability theory to quantify theoretical 
accuracy enabled by different candidate 
sensor suites.
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Kalman filter-based performance estimation

Linear dynamic measurement process:

k = discrete time index

y = sensed output vector

h = health parameter vector

x = state vector

u = actuator command vector

v = measurement noise (N(0,σ) with 

covariance R)

w = process noise (N(0,σ) with covariance Q)
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Optimal tuner selection methodology* 

applied to produce reduced-order system 

and enable Kalman filter estimation when 

facing underdetermined estimation 

problem:

• Define q = V*h

where V* is a transformation matrix

• V* is selected through an optimal 

iterative search to minimize Kalman 

filter mean squared estimation error in 

the parameters of interest

• Health parameter estimation:

*Reference: Simon, D.L., Garg, S., (2010), “Optimal Tuner Selection for 

Kalman Filter-Based Aircraft Engine Performance Estimation,” Journal of 

Engineering for Gas Turbines and Power, Vol. 132 / 0231601-1.

qVh ˆˆ *
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Kalman filter-based performance estimation

Kalman filter mean sum of squared estimation errors (SSEE) is the sum of the 

following components:

• Mean squared bias

• Variance 

Kalman filter mean squared bias and variance are functions of:

• Linear state-space model

• Choice of V*

• Process noise, Q

• Health parameter covariance, Ph

• Available sensor suite and corresponding measurement covariance, R

Sensor selection methodology designed to determine sensor 

suite that minimizes the mean SSEE
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Maximum a posteriori (MAP)

performance estimation

Linear steady-state measurement process:

Δy = residuals in the sensed measurement vector

H = influence coefficient matrix

Δh = health parameter vector

v = measurement noise (N(0,σ) with covariance R)

vhHy  MAP estimation mean sum of squared 

estimation errors (SSEE) is the sum of 

the following components:

• Mean squared bias:

• Variance :

MAP mean squared bias and variance 

are functions of:

• Linear state-space model

• Health parameter covariance, Ph

• Available sensor suite and 

corresponding measurement 

covariance, R

Maximum a posteriori estimator:

Ph is the health parameter covariance matrix. 

Note: Incorporating a priori knowledge through Ph

allows estimates to be produced when facing 

underdetermined estimation problems
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Sensor selection methodology designed to determine sensor suite 

that minimizes the mean SSEE
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Weighted Least Squares

Single Fault Diagnostic Approach

Linear steady-state measurement process:

ΔΔy = vector of measurement residuals reflecting 

recent abrupt shifts in sensor measurements

Hf = fault influence coefficient matrix

f = vector of gas path fault magnitudes

v = measurement noise (N(0,σ) with covariance R)

Fault diagnostics performed via a two-step 

process:

1) Fault detection performed by monitoring a 

weighted sum of squared measurements 

(WSSM):

If WSSM > Threshold, T, fault declared

2)     Single fault isolation performed by comparing 

known system fault signatures to observed 

vector of measurement residuals, ΔΔy. Fault 

type that most closely matches observed 

signature in a weighted least squares sense is 

isolated as fault.

y1

 y2

Fault 

detection 

threshold

Actual 

measured 

fault 

signature

Estimated fault 

signatures for each 

candidate fault type

Legend:

= fault type “a”

= fault type “b”

= fault type “c”

Illustration of Single-Fault Diagnostic Approach in 

Two-Dimensional Measurement Space
• Fault signature, exceeding defined failure threshold, is 

detected (indicated by red “x”)

• Fault signatures of three system fault types (a, b, and c) are 

individually compared to measured fault signature

• In this example, fault type “b” will be classified as the fault as 

it most closely approximates the observed fault signature

vfHy
f
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Weighted Least Squares

Single Fault Diagnostic Approach (continued)

1) WSSM signal fault detection threshold, T, is set 

to yield a common target false positive rate 

(FPR):

Where:

T = WSSM detection threshold

k = Number of sensors

λ = Mean value of the WSSM signal

Γ = Gamma function

2) In the presence of a fault, the WSSM signal is 

distributed as a non-central chi-square 

distribution, and the true positive rate (TPR) is 

calculated as:

Where:

λ = Mean value of WSSM signal in the presence of a 

fault
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3) Applying a two-fault class assumption, the 

probability of misclassifying fault type “a” as fault 

type “b” is approximated as:

Where:

Φ = Standard normal distribution

DM = Mahalanobis distance

The probability of misclassifying fault type “a” as 

any other single fault type is:

Where: 

N = number of fault types

4) Correct classification rate (CCR) for fault type “a” 

and all fault types is: 
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Sensor selection methodology determines sensor suite that maximizes the correct classification rate (CCR)
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Linear Turbofan Engine Model Example

The sensor selection approaches were applied to a linear point 

model extracted from the NASA Commercial Modular Aero-

Propulsion System Simulation 40k (C-MAPSS40k) high-bypass 

turbofan engine model. 

7 State variables, x 3 Actuators, u 10 Health Parameters, h 6 baseline + 4 Optional Sensed outputs, y

Nf – fan speed Wf – fuel flow FAN efficiency Nf – fan speed

Baseline

Sensors

Nc – core speed VSV – variable stator vane FAN flow capacity Nc – core speed

Hs_LPC – LPC metal temp VBV – variable bleed valve LPC efficiency Ps30 – HPC exit static press

Hs_HPC – HPC metal temp LPC flow capacity T30 – HPC exit total temp

Hs_burner –burner metal temp HPC efficiency P50 – LPT exit total pressure

Hs_HPT – HPT metal temp HPC flow capacity T50 – LPT exit total temp

Hs_LPT – LPT metal temp HPT efficiency P14 – Bypass duct total pressure

Additional
(Optional)
Sensors

HPT flow capacity T14 – Bypass duct total temp

LPT efficiency P25 – HPC inlet total pressure

LPT flow capacity T25 – HPC inlet total temp.

Objective: assess the estimation and diagnostic improvements that 

can be gained by adding sensors individually or in combination to 

the baseline sensor suite
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Sensor Selection for

Health Parameter Estimation

Health Parameter Estimation:
 Objective is to minimize sum of squared 

estimation errors (SSEE) across all 10 health 

parameters

 Health parameters are assumed to exhibit 

simultaneous, uncorrelated, normally 

distributed random variations with a 

standard deviation of 2%

 Health parameter covariance matrix, Ph, is a 

1010 diagonal matrix with elements of 4.0 

along the diagonal.

Health parameters

1 ηFAN Fan efficiency

2 γFAN Fan flow capacity

3 ηLPC Low pressure compressor (LPC) efficiency

4 γLPC Low pressure compressor (LPC) flow capacity

5 ηHPC High pressure compressor (HPC) efficiency

6 γHPC High pressure compressor (HPC) flow capacity

7 ηHPT High pressure turbine (HPT) efficiency

8 γHPT High pressure turbine (HPT) flow capacity

9 ηLPT Low pressure turbine (LPT) efficiency

10 γLPT Low pressure turbine (LPT) flow capacity

Analytical techniques applied to predict theoretical SSEE for each candidate sensor suite

Monte Carlo simulations conducted to validate theoretical predictions
 Uses C-MAPSS40k linear point model

 Health parameters randomly assigned according to health parameter covariance matrix, Ph

 Random sensor measurement noise added in accordance with sensor measurement covariance 

matrix, R

 Kalman Filter Estimator – 200 trials, each 30 seconds in duration

 MAP Estimator – 400,000 trials, each a single sample in time

C-MAPSS40k Health Parameters
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Sensor Selection Results for

Health Parameter Estimation
#
 S

e
n

s
o

rs

sensors added 

to baseline
Sum of Squared Estimation Errors

P
1
4

T
1
4

P
2
5

T
2
5

Theoretical
Monte Carlo 

Simulation

6 17.21 17.35

7 x 13.66 13.94

7 x 13.81 14.44

7 x 12.83 13.19

7 x 12.58 12.90

8 x x 22.45 23.74

8 x x 9.14 9.94

8 x x 8.78 9.60

8 x x 10.44 11.47

8 x x 9.27 9.84

8 x x 8.60 8.90

9 x x x 10.07 11.66

9 x x x 6.13 7.29

9 x x x 4.79 5.45

9 x x x 4.95 5.75

10 x x x x 4.47 4.98

#
 S

e
n

s
o

rs

sensors added 

to baseline
Sum of Squared Estimation Errors

P
1
4

T
1
4

P
2
5

T
2
5

Theoretical
Monte Carlo 

Simulation

6 16.35 16.36

7 x 12.86 12.86

7 x 14.54 14.55

7 x 12.36 12.37

7 x 12.36 12.36

8 x x 12.38 12.38

8 x x 8.87 8.86

8 x x 8.87 8.86

8 x x 10.55 10.55

8 x x 10.55 10.54

8 x x 8.40 8.41

9 x x x 8.39 8.38

9 x x x 8.39 8.38

9 x x x 4.91 4.91

9 x x x 6.59 6.60

10 x x x x 4.43 4.43

Kalman Filter Estimator Results MAP Estimator Results

Sensor Selection Results (Kalman filter and MAP estimator select the same sensors):

 Baseline + 1 sensor, choose: T25

 Baseline + 2 sensors, choose: T25 and P25

 Baseline + 3 sensors, choose: T25, P25, and P14
12
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Sensor Selection for

Gas Path Fault Diagnostics

Gas Path Fault Diagnostics:

 Objective is to maximize the correct 

classification rate (CCR) across all 8 gas 

path faults

 Each fault considered to occur in isolation, 

and to be of equal criticality and probability 

of occurrence

Analytical techniques applied to predict theoretical CCR for each candidate sensor suite

Monte Carlo simulations conducted to validate theoretical predictions
 Uses C-MAPSS40k linear fault influence coefficient matrix

 Random sensor measurement noise added in accordance with sensor measurement covariance matrix, R

 Monte Carlo simulation study consisted of 80,000 no fault cases and 10,000 cases for each of the 8 gas 

path fault types

 Detection threshold set to achieve theoretical false positive rate of 0.01 (1%)

Fault 

ID

Fault

type

Health parameters and 

actuator biases 

1 Fan fault ηFAN = -1%, γFAN = -2%

2 LPC fault ηLPC = -1%, γLPC = -2%

3 HPC fault ηHPC = -1%, γHPC = -2%

4 HPT fault ηHPT = -2%, γHPT = +1%

5 LPT fault ηLPT = -2%, γLPT = +1%

6 Wf bias Wf bias = -2%

7 VSV bias VSV bias = -1 degree stroke

8 VBV bias VBV bias = +20%

Gas Path Fault Types
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Sensor Selection Results for

Gas Path Diagnostics

Monte Carlo results 

• Confirmed theoretical target false positive rate 

of 1%

• Theoretical correct classification rate (CCR) 

found to under-predict Monte Carlo CCR. This is 

attributed to the 2 fault class simplifying 

assumption made in calculating the theoretical 

CCR.

Sensor Selection Choices:

• Baseline + 1 sensor, choose: T25

• Baseline + 2 sensors, choose: T25 and T14

• Baseline + 3 sensors:

o Theoretical choose: T25, T14, and P25

o Monte Carlo choose: T25, T14 and P14

Gas Path Diagnostic Results

#
 S

e
n

s
o

rs

sensors 

added to 

baseline

False Positive

Rate (%)

Correct Classification

Rate (%)

P
1
4

T
1
4

P
2
5

T
2
5

Theoretical
Monte Carlo 

Simulation
Theoretical

Monte Carlo 

Simulation

6 1.00 1.04 84.60 88.40

7 x 1.00 1.02 85.51 89.06

7 x 1.00 0.99 85.84 89.18

7 x 1.00 1.00 88.98 90.39

7 x 1.00 1.07 91.58 92.59

8 x x 1.00 1.03 86.29 89.47

8 x x 1.00 1.03 89.73 91.11

8 x x 1.00 1.05 92.28 93.23

8 x x 1.00 1.02 89.97 91.19

8 x x 1.00 1.02 92.42 93.30

8 x x 1.00 1.01 92.04 92.57

9 x x x 1.00 1.02 90.28 91.48

9 x x x 1.00 1.02 92.69 93.55

9 x x x 1.00 1.01 92.70 93.29

9 x x x 1.00 1.02 92.83 93.32

10 x x x x 1.00 1.00 93.07 93.57
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Conclusions

• Sensor selection methods introduced in this paper were found to 
perform well in identifying optimal sensor suites

• Results are application-specific to engine model considered and 
measurement noise, health parameter variations, and fault types 
assumed

• Kalman filter and MAP estimator based sensor-selection 
methods found to yield good agreement between theoretical 
predictions and simulation results. Also found to yield same 
sensor selection choices.

• Weighted Least Squares Single Fault Diagnostic sensor 
selection methods found to slightly under-predict correct 
classification rate

• Follow-on recommendations
– Incorporate other factors of merit such as sensor life cycle cost (cost, 

weight, reliability, etc.) and criticality of different fault types

– Extend to additional operating points beyond single linear point analysis 
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Linear Turbofan Engine Model Example

Sensor Selection Approach:
• Optional sensors are evaluated for estimation accuracy or diagnostic 

improvement they provide if added individually or in combination to baseline 

sensor suite. 

• Given n sensors to choose from, and a target number, k, of additional sensors, 

the total number of sensor suite combinations will be:

• Thus, the number of sensor combinations when adding 1, 2, 3, or 4 sensors to 

the baseline 6 sensors are:

o Baseline sensors 1 combination

o Baseline + 1 sensor 4 combinations

o Baseline + 2 sensors 6 combinations

o Baseline + 3 sensors 4 combinations

o Baseline + 4 sensors 1 combination

• Analytical metrics are applied to calculate theoretical performance for each 

sensor suite

• Monte Carlo simulation analysis is then conducted to verify theoretical 

predictions
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Performance estimation and gas path fault 

diagnostic methods considered in this study

• Performance Estimation Methods: 
– Kalman filter estimation

• Applied in dynamic, streaming (continuous) engine measurement process

• Underdetermined estimation addressed by combining health parameters into a 
reduced set of optimal tuners

– Maximum a posteriori estimation

• Applied in steady-state measurement process as available through “snapshot” 
measurements

• Underdetermined estimation addressed by leveraging a priori knowledge 
regarding health parameter covariance

• Gas Path Fault Diagnostic Method: 
– Weighted-least squares single fault diagnostic approach

• Fault detection performed by monitoring for abrupt shifts in measurements

• Fault isolation performed by identifying the known fault signature that most closely 
matches observed measurement signature in multi-parameter measurement 
space in a weighted-least squares approach

Sensor selection methods tailored to given estimation/diagnostic method
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